skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bridges, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate prediction of parallel application performance in HPC systems is essential for efficient resource allocation and system design. Classical performance models estimate of speedup based on theoretical assumptions, but their applicability is limited by parameter estimation, data acquisition, and real-world system issues such as latency and network congestion. This paper describes performance prediction using classical performance models boosted by a trainable machine learning framework. Domain-informed machine-learning models estimate the overhead of an application for a given problem size and resource configuration as a coefficient of the estimated speedup provided by performance laws. We evaluate this approach on two HPC mini-applications and two full applications with varying patterns of computation and communication and also evaluate the prediction accuracy on runs with varying processors-per-node configurations. Our results show that this method significantly improves the accuracy of performance predictions over standard analytical models and black-box regressors, while remaining robust even with limited training data. 
    more » « less
    Free, publicly-accessible full text available December 17, 2026
  2. Not AvailableNext-generation HPC clusters are evolving into highly heterogeneous systems that integrate traditional computing resources with emerging accelerator technologies such as quantum processors, neuromorphic units, dataflow architectures, and specialized AI accelerators within a unified infrastructure. These advanced systems enable workloads to dynamically utilize different accelerators during various computation phases, creating complex execution patterns. The performance of the workloads can therefore be impacted by many factors, including how the accelerators are shared, their utilization, and their placement within the system. Moreover, effects such as the system and network state due to the overall system load can significantly impact the job completion rate. Understanding, identifying, and quantifying the impact of the most critical factors (e.g., the number of allocated accelerators) will help decide the investment decisions for accelerator acquisition and deployment that can improve the overall system throughput. This paper extensively studies these complex interactions among advanced accelerators within an HPC cluster and various workloads. We introduce a novel analytical model which predicts the speedup of a workload given an accelerator/system configuration. This model can be used to quantify the effect of augmenting additional accelerators on job performance running on an HPC cluster. We validate the model using both simulated and real environments. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. This is the initial public release of the NSF funded PASCAL-G algorithm, which includes the MPI implementation we developed. 
    more » « less
  4. This is the initial public release for a funded project by NFS which developes the Kafka Pipeline orchestrated in Kubernetes to run a data streamiong in a real-time fashion. 
    more » « less
  5. Modern architectures and communication systems software include complex hardware, communication abstractions, and optimizations that make their performance difficult to measure, model, and understand. This paper examines the ability of modified versions of the existing Netgauge communication performance measurement tool and LogGOPS performance model to accurately characterize communication behavior of modern hardware, MPI abstractions, and implementations. This includes analyzing their ability to model both GPU-aware communication in different MPI implementations and quantifying the performance characteristics of different approaches to non-contiguous data communication on modern GPU systems. This paper also applies these techniques to quantify the performance of different implementations and optimization approaches to non-contiguous data communication on a variety of systems, demonstrating that modern communication system design approaches can result in widely-varying and difficult-to-predict performance variation, even within the same hardware/communication software combination. 
    more » « less
  6. This release covers the state of the data and associated analysis code for determining code sharing between cryptocurrency codebases funded through the end of the original NSF CRII award. This material is based on work supported by the National Science Foundation under Grant CNS-1849729.</p> 
    more » « less
  7. null (Ed.)
    Large-scale, high-throughput computational science faces an accelerating convergence of software and hardware. Software container-based solutions have become common in cloud-based datacenter environments, and are considered promising tools for addressing heterogeneity and portability concerns. However, container solutions reflect a set of assumptions which complicate their adoption by developers and users of scientific workflow applications. Nor are containers a universal solution for deployment in high-performance computing (HPC) environments which have specialized and vertically integrated scheduling and runtime software stacks. In this paper, we present a container design and deployment approach which uses modular layering to ease the deployment of containers into existing HPC environments. This layered approach allows operating system integrations, support for different communication and performance monitoring libraries, and application code to be defined and interchanged in isolation. We describe in this paper the details of our approach, including specifics about container deployment and orchestration for different HPC scheduling systems. We also describe how this layering method can be used to build containers for two separate applications, each deployed on clusters with different batch schedulers, MPI networking support, and performance monitoring requirements. Our experience indicates that the layered approach is a viable strategy for building applications intended to provide similar behavior across widely varying deployment targets. 
    more » « less
  8. null (Ed.)
    This poster presents an HPC application workflow system whose goal is to provide verifiably-reproducible HPC application performance. This system combines existing container, experiment, and data management techniques with HPC performance models, allowing it to both maximize performance reproducibility and inform users when application performance deviates from what should be expected even when running at scales or for lengths of time at which the application had never run. 
    more » « less
  9. null (Ed.)
    Performance variation deriving from hardware and software sources is common in modern scientific and data-intensive computing systems, and synchronization in parallel and distributed programs often exacerbates their impacts at scale. The decentralized and emergent effects of such variation are, unfortunately, also difficult to systematically measure, analyze, and predict; modeling assumptions which are stringent enough to make analysis tractable frequently cannot be guaranteed at meaningful application scales, and longitudinal methods at such scales can require the capture and manipulation of impractically large amounts of data. This paper describes a new, scalable, and statistically robust approach for effective modeling, measurement, and analysis of large-scale performance variation in HPC systems. Our approach avoids the need to reason about complex distributions of runtimes among large numbers of individual application processes by focusing instead on the maximum length of distributed workload intervals. We describe this approach and its implementation in MPI which makes it applicable to a diverse set of HPC workloads. We also present evaluations of these techniques for quantifying and predicting performance variation carried out on large-scale computing systems, and discuss the strengths and limitations of the underlying modeling assumptions. 
    more » « less